Smart Strategies for Control Room Temperature Shipping of Mail Order Specialty Pharmaceuticals

Anthony Alleva, BA, Chantal Walker, MESc, CTP Level II, Ryan Sanders, Kevin Kohleriter, MBA, Jordan Bonomo, BS, BA

Background

Phase Change Materials (PCMs) are not typically associated with low-cost cold chain solutions, as they compete with water-based solutions that have been used for decades. When controlling temperatures near 0°C, water is your best option regarding cost and performance. However, when the temperature requirement is at room temperature, a properly formulated and utilized PCM can far outperform water.

This results in smaller, lighter, more efficient packaging with significantly reduced storage space and shipping costs. It also has a major environmental impact related to both manufacturing and disposal.

Objectives

This case study will demonstrate how properly tested PCMs, in a mat format, can be used with the International Safe Transit Association's (ISTA) temperature profiles to create a lighter, more cost-effective solution for Controlled Room Temperature (CRT) applications.

Methods

In 2022, TempAid began testing configurations that included comparing soft pouch PCM mats to water-based gel pack configurations.

The testing had the goal of maintaining $15 - 25^{\circ}$ C against the ISTA 7D Winter profile using four different coolers 8, 16, 23 and 50 liters), with each cooler having two different configurations: One water-based gel pack configuration and one PCM18 Mat configuration.

Results & Conculsion

Attribute	8 L PCM18 Mat	8 L Gel Pack	18 L PCM18 Mat	18 L Gel Pack	26 L PCM18 Mat	26 L Gel Pack	50 L PCM18 Mat	50 L Gel Pack
Tare Weight (lbs)	4.82	13.87	5.14	16.62	8.02	35.38	14.46	46.8
Available Payload Volume (L)	2.86	1.27	6.57	2.93	14.94	8.55	29.91	21.7
Time between 15 - 25 °C (h)	50	32	48	36	50	48	54	53

Attribute	8 L Cooler	18 L Cooler	26 L Cooler	50 L Cooler
Weight Reduction	65%	69%	77%	69%
Available Payload Volume Increase	125%	124%	75%	38%
Performance Duration Improvement	56%	33%	4%	2%

Translating Results to Total Cost of Ownership

The PCM18 configurations, for example, weigh an average of 70% less than gel pack configurations. It also showed an increase in the available payload volume by 90.5% while improving performance durations by an average of 24%. Statistically, in every case, the smaller the cooler payload, the more the potential savings. The resulting study concluded that utilizing PCM mats instead of gel packs allowed for:

- Downsizing containers without compromising payload capacity.
- Reduced required warehousing space for coolers and refrigerants by almost 12x.
- Provided recipients with lighter and less bulky containers that were easer to handle and dispose.
- Significant environmental impact due to reduced package size and energy consumption in shipping.
- Shipping more product in the same sized container, larger shipments with more product to a single receiver at the same cost point, or consolidating shipments for improved packing efficiency.
- Potential for cost savings, increased productivity, and better logistics.